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Abstract
Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K+, Ca2+, and protein to 
optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. 
The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeo-
stasis and the idea of a glia-lymph or ‘glymphatic’ system for waste clearance from brain has developed over the last 5 years. 
This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective 
transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, 
and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important 
amendments to the ‘glymphatic’ hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. 
This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport 
solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; 
discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and 
reconsiders the roles of the perivascular space (PVS) in CSF–ISF exchange and drainage. We also consider the extent to 
which CSF–ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as 
a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies 
both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion 
along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular 
unit associated with CNS microvessels, and, finally, a mixture of CSF/ISF/waste products is normally cleared along the PVS 
of venules/veins as well as other pathways; such a system may or may not constitute a true ‘circulation’, but, at the least, 
suggests a comprehensive re-evaluation of the previously proposed ‘glymphatic’ concepts in favour of a new system better 
taking into account basic cerebrovascular physiology and fluid transport considerations.
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Introduction

The brain is the most important regulatory site in the body, 
coordinating the input from sensory endings in all organs 
and the appropriate motor output in response, taking into 
account learning and memory, and allowing for running 
repairs to maintain active function. The neurons respon-
sible for this coordination and their synaptic interconnec-
tions use transmembrane ionic gradients and movements 
to generate essential potential changes, including action 
potentials that propagate along axons, and synaptic poten-
tials generated in post-synaptic membranes by transmit-
ters released from the presynaptic neuron. Generation of 
the ionic currents responsible requires an extremely stable 
ionic microenvironment [2]. Homeostasis of the neural 
microenvironment depends on the effective separation of 
this environment from the blood while allowing efficient 
exchange of essential gases, nutrients and waste products 
of metabolism, and efficient removal of larger waste prod-
ucts and cell debris. The housing of the delicate brain tis-
sue within the skull provides some mechanical protection 
from trauma, but ‘buffer zones’ allowing the brain to float 
in a suitable fluid are also needed. The modern mammalian 
brain achieves all of these by compartmentalisation that 
allows dynamic exchange across key interfaces.

The surface of the brain is protected by three layers of 
‘meninges’, the tough outer dura, then the ‘leptomeninges’ 
formed by the arachnoid layer and the pia [44]. The mam-
malian central nervous system is immersed in cerebrospinal 
fluid (CSF), a complex secretion primarily from circulating 
plasma, divided unequally between ventricular sites inside 
the brain (the connected lateral, third, and fourth ventricles) 
and extraventricular sites outside the brain and spinal cord 
(the subarachnoid spaces that typically contain most of the 
CSF) [44, 138, 177]. Interstitial fluid (ISF) fills the narrow 
40–60 nm wide extracellular space (ECS) between neurons 
and glia [171, 180]. While ISF is often regarded as simi-
lar in composition to CSF, this may be strictly correct only 
at ventricular and pial brain/spinal cord surface interfaces, 
because (1) diffusion increasingly limits exchange with dis-
tance from these interfaces and (2) a number of proteins and 
polysaccharides, e.g., extracellular matrix, are bound to cells 
and other ECS constituents and, therefore, not available for 
free exchange with the relatively cell-free CSF [171, 192].

History of CSF generation and flow

Ancient views on the role of CSF have ranged from 
symptoms of disease, to the seat of the soul or spirit. The 
ethereal spirit was thought to be formed in the brain and 

processed to a liquor vitalis, flowing to the rest of the 
body along nerves and spinal cord (Galenus of Pergamon 
130–201 AD, in [13]). What is astounding to us now is 
that the brain itself was thought to have little value, beyond 
acting as a conduit for CSF and maintaining the fluid. This 
idea became so culturally embedded, despite reservations 
by scientists such as Vesalius in the sixteenth century, 
that Shakespeare writes “a foolish … spirit, …full of … 
objects, ideas, apprehensions, …begot in the ventricles of 
memory, nourished in the womb of the pia mater” when 
describing his school master in ‘Love’s Labour’s Lost’ 
[13].

Centuries of anatomists including Cotugno (1764), 
Magendie (1842), and von Luschka (1870) [46] demon-
strated the connections between the lateral ventricles and 
subarachnoid space, the latter two giving their names to the 
anatomical foramina connecting these spaces. Although they 
could not then discern the direction of CSF flow, important 
progress was made. However, it was not until 1891 when 
Quincke developed lumbar puncture to sample CSF from 
living subjects [116] that the modern study of CSF dynam-
ics, production, and composition began, opening the way 
to new tools for diagnosis of brain diseases and treatment 
progress.

In the early twentieth century, experimental physiolo-
gists took this further, identifying a location for CSF secre-
tion as the choroid plexuses (CPs) and the source of fluid 
as choroidal blood. By removing one lateral ventricle CP 
in the dog and blocking outflow via the foramina of Monro 
and the aqueduct of Sylvius, Dandy in 1919 [40] observed 
the ventricle containing the plexus expanded, while the 
other decreased in size, concluding that the CP was actively 
secreting CSF. More direct evidence for choroidal blood 
as a source of the CSF was given by Welch in 1963 [187] 
who showed that the haematocrit of blood from the main 
choroidal vein was higher than in the anterior choroidal 
artery, suggesting loss of plasma volume as the blood passed 
through the plexus. The rate of CSF secretion has since been 
estimated for several mammalian species using a variety of 
techniques. Despite the obvious caveats when comparing 
rates between species, CSF secretion rate per unit weight of 
CP is quite comparable, between 0.2 and 0.6 µl/min/g [45].

At the same time as Welch, Ames et al. [5] observed 
freshly secreted CSF from exposed CPs which had been 
covered in oil. This method allowed newly secreted CSF 
collection and analysis, showing that its composition was 
similar to bulk CSF, but quite different from a simple plasma 
filtrate. For example, CSF has a higher Na+ and Cl− con-
centration compared to plasma, but is lower in K+, Ca2+, 
glucose, amino acids, and urea [41]. Notably, CSF has little 
protein, less than 0.5% of plasma levels [39]. The relative 
paucity of complex molecules led to the idea of CSF act-
ing as a ‘sink’ [42] into which brain metabolites and waste 



389Acta Neuropathologica (2018) 135:387–407	

1 3

products could flow down their concentration gradient and 
be removed with the normal drainage of CSF. Examples 
include metabolites of serotonin and histamine flowing from 
brain into CSF for disposal [10, 140].

Pulsatile flow of CSF

With the advent of modern imaging techniques, especially 
phase contrast and real-time MRI, it is now possible to visu-
alise CSF flow in the intact CNS and understand its circula-
tion in more detail. These techniques are not without meth-
odological issues [22], but the weight of evidence favours 
a second-to-second pulsatile movement of CSF through the 
ventricular system, which also changes throughout the day. 
Early MRI studies by Nilsson et al. [129] observed pulsatile 
CSF flow through the cerebral aqueduct, and CSF veloc-
ity varied with cardiac cycle. During cardiac systole, CSF 
flowed approximately 8 mm/s toward the posterior brain 
(caudally), then gently back at 5 mm/s to the anterior brain 
(cranially) during cardiac diastole. Although the net direc-
tion of flow is toward the posterior brain, such pulsatility 
would act to mix CSF contents between ventricles and 
encourage the sink action of CSF (illustrative video can be 
seen at Wikimedia creative commons; [49]). Because peak 
CSF pulse velocity corresponds with the elevated systolic 
blood pressure during each heart beat, the increased volume 
and pressure of blood entering the brain tissue and plex-
uses is thought to cause transient tissue swelling, squeezing 
the ventricles and subarachnoid space (SAS), mixing and 
moving the bulk CSF toward drainage sites. Mathematical 
models developed by Linninger and colleagues to inform a 
mechanistic understanding of the relationship between vas-
cular pulsation and CSF flow correlate well with in vivo 
data from healthy humans and help explain in more detail 
the clinical observation that CSF flow reversal is seen first in 
the cisterns, then in the lateral ventricles during the cardiac 
cycle [170]. Their models predict that vascular expansion 
following cardiac systole occurs first at the base of the brain, 
so reversing the flow of cisternal CSF, followed by dila-
tion of arterioles in brain parenchyma, compressing both 
subarachnoid space and lateral ventricles and displacing 
fluid toward the spinal canal. Contributing to this rhythm, 
respiration adds to pulsatility, but at a lower frequency [54]. 
Spector et al. [166] suggest that during anaesthesia, with 
slower and shallower breathing, this mixing effect would 
be reduced.

Superimposed on these acute pulses is a circadian or 
diurnal rhythm. In children with hydrocephalus and an 
intrathecal catheter, circadian rhythms are seen in intracra-
nial pressure, achieving twice the pressure during slow-wave 
sleep compared to the awake state [149]. In adult volunteers 
(25–32 years), maximal CSF production was estimated as 

42 ± 2 ml/h at 02:00 in the middle of the sleep cycle (range 
35–48 ml/h n = 6), whereas the minimum was 12 ± 7 ml/h 
at 18:00 in the afternoon [129]. This gives a range of around 
300–1000 ml CSF produced per day, depending on the time 
of day that the measurements are made. A similar diurnal 
rhythmicity is also seen in rat CSF [100], and interestingly, 
there is a parallel change in blood-brain barrier (BBB) P-gly-
coprotein efflux transport function, which is increased dur-
ing the waking period, suggesting a wider circadian control 
of brain barriers and fluids consistent with the majority of 
physiological functions.

Refinements in MRI and improved resolution have made 
CSF imaging an invaluable tool in diagnosis and treatment 
supervision and carefully designed studies have confirmed 
these early results. Overall, the net CSF flow in adults is 
through the ventricles to the basal subarachnoid spaces [12, 
166].

The need for CSF—brain ISF exchange

The exchange between CSF and ISF is the subject of intense 
and technically difficult investigation, either in the context of 
CSF as a route for drug delivery to brain, or to understand 
removal of waste products and pathological markers. How-
ever, what might be the physiological purpose of this fluid 
exchange, beyond acting as a sink?

The requirement for molecular transfer between CSF 
and brain ISF can be illustrated by compounds which are 
required by the CNS, but do not significantly enter brain 
from the systemic circulation across the brain endothelium 
forming the BBB. These fall into three categories based on 
the origin of the molecules.

First, compounds synthesised by one region of the brain 
may require wider CNS distribution and use CSF pathways 
to achieve this, for example, melatonin and vasopressin 
[147, 152, 153]. Melatonin, an antioxidant which also sets 
the body’s circadian rhythm via the suprachiasmatic nucleus 
(SCN), requires CSF for its distribution from synthesis in the 
pineal gland to multiple CNS sites. Melatonin is secreted 
into the third ventricle (3V) CSF, which is in direct con-
tact with the pinealocytes; at night, during peak melatonin 
synthesis, the CSF concentration is 15–20× that of plasma 
[110, 174]. The hormone is transferred by CSF to the SCN, 
other hypothalamic regions, the hippocampus, and choroid 
plexuses, where there are high affinity MT1 receptors [56]. 
Lateral ventricle (LV) melatonin concentrations have been 
reported to be far lower than 3V melatonin concentrations; 
this observation has been used in part to argue that 3V mela-
tonin is not coming from recirculation via the plasma and 
choroid plexuses but rather through direct secretion into 
the pineal recess [159, 183]. Indeed, in sheep, brain mela-
tonin concentration close to the third ventricle walls and 



390	 Acta Neuropathologica (2018) 135:387–407

1 3

aqueduct of Sylvius is double that of plasma [110], penetrat-
ing 8–10 mm into brain as the concentration gradually falls.

In a second category are compounds of the systemic cir-
culation that primarily enter CNS across the CPs into CSF, 
for example, vitamin C and folate [164, 165]. Vitamin C 
crosses CPs via the sodium vitamin C transporter 2 (SVCT2, 
solute carrier family Slc23a1), which is absent at the BBB 
in health, although may be expressed after stroke [67]. Oxi-
dized vitamin C (≈ 10% of total vitamin C) may use the 
GLUT1 transporter [130], but there is little functional con-
tribution in SVCT2 knockout mice, where CNS vitamin C is 
not detectable and mice die soon after birth [163]. In wild-
type animals, CSF and brain vitamin C are around 6× higher 
than plasma (200–400 and 30–60 μM, respectively [130]).

Third, many compounds are synthesised by CPs or lep-
tomeninges in health or response to disease or trauma, and 
secreted into CSF for CNS use, for example, transthyretin, 
IGF-II and NGF [15, 25, 26, 169].

The extent to which molecules exchange between CSF 
and ISF depends on many factors, including their chemistry 
(mass and lipophilicity), the presence and direction of con-
centration gradients, and the presence of cellular receptors 
or uptake mechanisms on tanycytes, astrocytes, and neurons. 
However, it is clear that such exchange is an important part 
of CNS function and homeostasis.

Blood vessels and the perivascular space

Arteries in the subarachnoid space penetrate into the brain 
parenchyma, carrying with them a number of layers (Fig. 1). 
The arteries branch into arterioles and then capillaries, fol-
lowed by transition into venules and veins and finally vascu-
lar return to the brain surface. At the capillary level, trans-
verse sections show one or more endothelial cells lining the 
lumen and a number of associated cell types including peri-
cytes and astrocyte foot processes (endfeet), together with 
their basal laminae, forming the neurovascular unit (NVU).

The perivascular spaces (PVS)1 of cerebral blood vessels 
have in recent years been the subject of increasing research 
focus as pathways for CSF/ISF exchange [1, 74, 89, 91, 95, 
112, 137, 138, 162], but controversy exists over their precise 
role [58, 77, 96, 161, 162]. Indeed, the glial components 
(astrocyte foot processes) that provide the outer boundary 

of the PVS within the parenchyma have been proposed to 
serve a special function for CNS clearance and waste turno-
ver, forming the basis for a so-called ‘glymphatic’ circula-
tion [91, 124] that may potentially allow a more complete 
exchange of CSF and ISF at both superficial and deep sites 
spanning the entire neural axis. Such a PVS (Fig. 1a) may be 
identified on all larger cerebral blood vessels in both the sub-
arachnoid spaces (leptomeningeal blood vessels) and within 
the parenchyma. Filled with a fluid in potential communica-
tion with both CSF and ISF but also containing connective 
tissue, scattered cells, and basement membranes (BM), the 
PVS is a real compartment within the vascular connective 
tissue space of the adventitia [63, 97, 108, 137, 158, 194, 
200] and possibly also the tunica media BM of large vessels 
[24, 137, 189] as well as a potential compartment within 
the basal lamina of capillaries [74, 91, 137, 148]. Potential 
routes of entry from the CSF into the PVS include special-
ized pores, termed stomata, recently demonstrated on the 
adventitial lining cells of leptomeningeal vessels in the SAS 
of the rat by scanning electron microscopy [137] (Fig. 1b), 
confirming earlier decades-old identification of such struc-
tures in cats [199]; similar pores may also exist on the pia 
[30, 146], providing an additional route into the PVS via the 
subpial space (discussed in [137]). It has become increas-
ingly clear that substances within the CSF may potentially 
access and distribute along the PVS to varying extents all 
throughout the cerebrovascular tree, e.g., large full length 
antibodies (immunoglobulin G) have been shown to access 
the PVS of arterioles (Fig. 1c), capillaries (Fig. 1d), and ven-
ules following intrathecal infusion in rats [137]. The dem-
onstration that CSF-infused tracers can distribute perivascu-
larly even along microvessels comprising the classical NVU 
has now led to a number of interesting questions regarding 
(1) how such a perivascular distribution might accomplish 
CSF–ISF exchange, (2) the roles that astrocytes may play 
in regulating CSF–ISF exchange, and (3) the transport pro-
cesses (e.g., diffusion, dispersion, or convection) governing 
fluid and tracer movement within the PVS and the surround-
ing brain ECS (Fig. 2). The PVS is unquestionably a site of 
great importance due to its involvement in disease processes 
affecting the NVU (e.g., cerebral amyloid angiopathy, pre-
sent in > 90% of Alzheimer’s disease brains and a major 
cause of intracerebral haemorrhage in the elderly; [70, 87, 
176]), emerging roles in physiology (e.g., immune surveil-
lance, central waste clearance and the proposed ‘glymphatic’ 
concepts; [95, 121, 124, 137]), and as a critical gatekeeper 
for widespread central drug delivery [137].1  Definitions: ‘Peri’ is enclosing or surrounding (as in pericardial, 

perimeter); ‘Para’ has many, less specific meanings, along or beside, 
e.g. parathyroid—but this does not really apply to circumferential 
structures. In common terms, ‘para’ is alongside (as in paramedic) or 
relating to, not the structure enveloping something closely. So here 
we have chosen to use the term ‘perivascular’ for the small spaces 
surrounding vessels in which tracer can move, and this is also its most 
common usage for the BBB/NVU.
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Fig. 1   Perivascular space (PVS). a Schematic depicting a leptomenin-
geal artery in the subarachnoid space as it penetrates into the brain 
parenchyma (neuropil), with a gradually thinning smooth muscle 
cell layer (tunica media) and narrowing lumen diameter. Smooth 
muscle cells become sparser as vessel size decreases, with capillary 
microvessels characterized by a small lumen, pericytes, and a basal 
lamina originating mainly from capillary endothelial cells and astro-
cytes. Key locations of potential CSF and ISF exchange are labelled 
with red text: (1) stomata/pores present on the CSF-facing leptome-
ningeal lining cells that have been identified on the outer surfaces 
of arteries in the subarachnoid space; (2) fenestrations/gaps/clefts 
on the CSF-facing pial lining cells of the brain surface; and (3) the 
PVS, a fluid compartment within the outer walls of blood vessels that 
includes the vascular connective tissue space of the arterial/arteriolar 
adventitia, the basement membrane (BM) surrounding smooth muscle 

cells in the tunica media, and potentially extends all the way down 
to a pericapillary fluid space between astroglial and endothelial BM 
of microvessels. Veins/venules are not depicted. b Scanning electron 
micrographs show the existence of numerous pores/openings termed 
‘stomata’ on the outer leptomeningeal sheaths of blood vessels in the 
subarachnoid space. Shown: middle cerebral artery (MCA) leptome-
ningeal surface (rat) exhibiting a micron-sized pore with noticeably 
dense, underlying perivascular fibres in the vascular connective tissue 
space (see [137]). c–d Fluorescently labelled non-targeted immuno-
globulin G (IgG) antibodies intrathecally (I.T.) infused at a low flow 
rate (80 µl applied cisternally over 50 min) reveal prominent perivas-
cular signal along all vessel types in the rat, including cortical pen-
etrating arterioles and numerous microvessels (shown). RECA-1, rat 
endothelial cell antigen-1 (endothelial cell marker) (d adapted from 
[137])
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Historical considerations: CSF/ISF exchange 
and flow along low‑resistance pathways 
including the PVS

It was recognized over one century ago that CSF was pri-
marily formed by the choroid plexuses in the ventricles of 
the brain, through which it flowed before reaching the cranial 
and spinal SAS [38, 186]. Even then, it was thought that ISF 
secreted at the BBB may drain along perivascular spaces 
out of the brain and into the CSF to clear the brain of waste 
[38, 186], a concept revisited 60 years later by Helen Cserr 
to explain how the brain, lacking the classical lymphatics of 
the periphery, might accomplish efficient waste removal [32, 
36, 37]. Importantly, Cserr and colleagues [32–36] revived 
an earlier idea that a convective or bulk flow of ISF occurred 
along specialized pathways in the brain to communicate with 
and drain to the CSF. The key experiments involved the 
injection of small volumes (< 1 µl) of 2000 kDa blue dextran 
[36] or 40 kDa horseradish peroxidase [33] into the cau-
date nucleus. Although tracer profiles close to the injection 
site were interpreted as suggestive of short range diffusive 
transport in brain ECS, longer range transport seemingly 

inconsistent with diffusion was also observed along the 
perivascular spaces of blood vessels, along white matter 
tracts, and within the subependymal region and interpreted 
as having been produced by convective transport (bulk flow).

Subsequent studies showed that a variety of different radi-
olabelled tracers were cleared from the brain with similar 
rate constants, despite vast differences in molecular size and 
diffusion coefficient, again suggestive of a clearance process 
that was convective in nature [33, 34]. While others disa-
greed with the existence of these convective flow pathways 
for ISF–CSF exchange, arguing that diffusion through the 
brain ECS was solely responsible for drainage [43, 133], 
a general consensus emerged around the idea that ISF is 
largely produced by secretion of fluid across the capillaries 
[1, 33], albeit with some contribution from the CSF [1], and 
that ISF is an important extra-choroidal source of CSF [119, 
139]. Later studies complementary to Cserr’s original work 
also suggested preferential routes for ISF flow in the white 
matter [150], particularly in the presence of brain oedema 
[99, 131, 132], and in the perivascular spaces [148].

Experiments and discussion suggesting that CSF could 
potentially flow into the brain along the perivascular spaces 

Fig. 2   Neurovascular unit (NVU). The NVU refers to the monolayer 
of brain endothelial cells making up CNS blood vessels (and smooth 
muscle cells for larger caliber vessels), their associated neurons, and 
the numerous non-neuronal cells (e.g., pericytes, astrocytes, and 
microglia), extracellular matrix and basement membranes that sur-
round them; our understanding of the NVU and the details of the 
extensive coupling, association, and regulation that exists between 
NVU components remains a highly active area of investigation. 
Key questions (bulleted text) include the degree of astrocyte cover-
age (e.g., are adjacent astrocyte foot processes nearly always closely 
situated or do larger gaps exist to allow more intimate association of 

neurons, microglia and other cells with the endothelial cell and its 
associated extracellular matrix?), the roles subserved by aquaporin-4 
(AQP4) water channels highly expressed on astrocytic endfeet, the 
normal mode of fluid/tracer transport in the extracellular space, and 
whether a pericapillary fluid space normally exists in the basal lamina 
(indicated with an asterisk), see text for discussion. The transmis-
sion electron micrograph (right) illustrates the extensive distribution 
of 40 kDa horseradish peroxidase through the extracellular space and 
the basal lamina of a cerebral blood vessel following intraventricular 
administration (adapted from [20] with permission)
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began in the early 1900s with several groups making con-
tributions (discussed in: [94, 193]). Studies conducted by 
Weed (1914) [186] implied that increased intracranial/infu-
sion pressure was required to achieve perivascular distribu-
tion of CSF-administered tracer, but subsequent work by 
Brierley (1950) [18] demonstrated perivascular distribution 
was possible with a physiological/minimal pressure increase. 
Later notable insights were provided by (1) Wagner (1974) 
[185] and Rennels (1985) [148], who showed that CSF-
infused substances may be capable of reaching the PVS of 
capillaries, (2) Rosenberg [150] and Konsman [104], who 
demonstrated the involvement of the white matter as a bulk 
flow pathway for CSF-infused substances, (3) Fenstermacher 
and Patlak (1970, 1975) [111, 135], Rosenberg (1980) [150], 
Ghersi-Egea (1996) [68], and Proescholdt (2000) [142], 
who performed experiments where the penetration of CSF-
infused tracers across the brain–CSF interfaces appeared 
consistent with diffusive transport, and (4) Krisch (1983, 
1984) [107, 108] and Ichimura (1991) [88], who demon-
strated communication between the ECS, PVS, subpial 
space, and subarachnoid trabeculae core following CSF 
infusion of tracer. It must be noted that the group of Weller 
and Carare have interpreted a number of their own more 
recent studies injecting tracers into the brain parenchyma 
as suggesting outward directed flow of ISF/solutes primar-
ily confined to the capillary basal lamina and the smooth 
muscle basement membrane (tunica media) of arterioles/
arteries [24, 120], a process they have termed an ‘intramural 
peri-arterial drainage’ pathway [48, 58]. Nevertheless, most 
experimental work and modelling to date has been inter-
preted as supporting some type of inward transport process 
from the CSF to the brain within the vascular connective 
tissue space of the tunica adventitia of arteries and arterioles 
(see [1, 77, 137] for more discussion).

The 1985 publication of Rennels et al. with CSF infu-
sions of HRP stands out for both the speed at which the 
tracer distributed throughout the brain (taking as little as 
10 min) and for the bold suggestion that a rapid ‘paravascu-
lar’ fluid circulation of CSF must exist along perivascular 
spaces comprising the entire vascular network (i.e., arter-
ies → capillaries → veins) to account for it [148]. While 
certain aspects of the Rennels work were questioned in the 
decade after their publication [88], the past 5 years have wit-
nessed a dramatically renewed interest in a possible circula-
tion of CSF and CSF-borne tracers along perivascular spaces 
with relevance for CSF–ISF exchange, initially stimulated by 
new work from Nedergaard and colleagues [91].

The ‘glymphatic’ system: original hypothesis 
and critical appraisal

In 2012, Iliff et al. reported findings based on intracisternal 
injections of fluorescently labelled dextrans and ovalbumin 
in mice, real-time monitoring of tracer movement using 
in vivo two-photon microscopy via a closed cranial window 
preparation, and ex vivo confocal microscopy that suggested 
to them a brain-wide system of ‘paravascular pathways’ [91]. 
Live animal two-photon imaging was used to show that fluo-
rescence from infused tracers first appeared along the PVS 
of arteries on the brain surface and their associated penetrat-
ing arterioles and only later along capillaries and draining 
venules. They observed that both a small (3 kDa) and very 
large (2000 kDa) dextran each appeared to be rapidly trans-
ported over great distances via the PVS (suggesting convec-
tive flow); however, only the smaller dextran appeared to 
efficiently leave the PVS to access the brain interstitium, 
interpreted as the result of ‘sieving’ by presumed nar-
row (~ 20 nm) gaps between astrocyte endfeet. When the 
same experiments were repeated in aquaporin-4 (AQP4) 
null mice, Iliff et al. reported that intracisternal ovalbumin 
(45 kDa) entry into the brain parenchyma was significantly 
diminished 30 min following a 5 min infusion (2 µl/min); 
furthermore, in vivo two-photon imaging showed that while 
2000 kDa dextran access to penetrating arteriole PVS did not 
appear to be significantly altered in AQP4-null animals, pen-
etration of 3 kDa dextran into the surrounding interstitium 
was dramatically reduced. Clearance of radiolabelled tracer 
substances out of the brain also tended to be reduced 1–2 h 
after intrastriatal injection in AQP4-null animals.

Taking account of these results together with speculated 
roles for how perivascular AQP4 might be affecting tracer 
distribution, as these water channels are enriched on glial 
(astrocyte) endfeet [9, 128], Iliff et al. hypothesized three 
serial steps of a glial-lymphatic or ‘glymphatic’ system for 
waste clearance: (1) initial convective flow of subarachnoid 
CSF into the brain along peri-arterial spaces; (2) AQP4-
facilitated water and tracer flow from this peri-arterial space 
through the brain ECS (‘transparenchymal’ convection) 
resulting in directed transport of ISF toward venules/veins; 
and (3) clearance out of the brain along peri-venous spaces 
[90, 91, 124, 125].

A major critique of the ‘glymphatic’ hypothesis involves 
the proposed role of AQP4. Aquaporins are a large family of 
cell membrane channels containing ~ 0.5 nm pores [72] that 
confer selective permeability to water and, in some cases, 
certain other small molecules; AQP1, AQP4, AQP5, and 
AQP9 are present in rodent brain [9]. AQP4 is particularly 
enriched in the brain at CSF interfaces [98], with polarized 
expression in astrocytes at the pial surface-facing glia limi-
tans, in ventricle-facing ependymal cells, and, importantly, 
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within perivascular endfeet that form the boundary between 
the parenchymal blood vessels and the neuropil [128] 
(Fig. 2). It has been unclear by what precise mechanism(s) 
perivascular astrocytic AQP4 water channels might facili-
tate a transparenchymal flow of ISF and perivascular mac-
romolecule tracers under normal conditions, as proposed in 
the ‘glymphatic’ concept, particularly because (1) directed 
convection from the arterial PVS to the venule PVS through 
the neuropil interstitium would depend on a hydrostatic pres-
sure/osmotic gradient that is difficult to envision [161], (2) 
AQP4 is incapable of transporting macromolecules, and (3) 
much experimental work has suggested the high hydraulic 
resistance of the brain ECS would greatly restrict such a flow 
in favour of diffusion [80, 138, 192]. In addition, a transpar-
enchymal flow of ISF, solutes, and waste would appear dif-
ficult to reconcile with the required homeostasis of the brain 
microenvironment for synaptic transmission. Aquaporins 
clearly do play diverse roles in brain water balance in health 
and disease [9, 84] and such concepts have undoubtedly 
informed the ‘glymphatic’ hypothesis. The previous studies 
performed on AQP4-deficient mice have demonstrated that 
such animals exhibit an increased brain ECS volume fraction 
[196], increased basal brain water content [73], and larger 
intracranial pressure elevations in response to induced vaso-
genic (non-cellular) oedema [134], suggesting that AQP4 
indeed plays critical roles in the transport of water between 
brain compartments as well as the formation and resolution 
of oedema. The key question for the ‘glymphatic’ concept 
is just what role astrocytic AQP4 may play in the circulation 
of fluid in perivascular compartments and how its deletion 
affects such circulation.

Verkman and colleagues have further argued that the 
proposed ‘glymphatic’ hypothesis and its reliance on AQP4 
are implausible based on physiological grounds [161] and 
recently reported on their own experimental work testing 
key aspects of the original Iliff et al. studies [162]. Interest-
ingly, this new work [162] emphasized that tracer move-
ment in the brain parenchyma (outside of the perivascular 
spaces) was size dependent and consistent with diffusion 
as the mechanism of transport, using a cisternal infusion 
paradigm in mice that was very similar to that employed by 
Iliff et al. [91]. A separate recent experimental study in rats 
[137] has also confirmed the role of tracer size-dependent 
diffusive transport at the pial brain surface using a similar 
cisternal infusion paradigm to the Nedergaard group [89]. 
Finally and perhaps most importantly, the Verkman group 
replicated many of the original Iliff et al. cisternal infusion 
experiments in AQP4-null animals and found no qualitative 
or quantitative differences in ovalbumin distribution between 
wild type and AQP4 null mice (or between wild type and 
AQP4 null rats) [162]. Further work will be required to 
resolve the precise role(s) that AQP4 water channels may 

or may not play with respect to tracer distribution in the 
perivascular and parenchymal compartments.

The role of brain capillaries in secreting a fluid suitable 
for the optimal function of neurons and glia was largely 
ignored in the early conception of the ‘glymphatic’ sys-
tem. The evidence for origin of ISF as a secretion across 
the brain capillary endothelium is well established; in vivo 
studies show good regulation of brain ions in the face of 
large changes in plasma concentration, and the necessary 
ion channels and transporters are expressed at the BBB [1, 
151]. Careful studies in primary cultured brain endothelial 
cells have provided a complex map of ion transporters and 
channels on apical and basal membranes, and the ways in 
which they could generate the required fluid flow [78]. As 
the flow rate per unit area is low compared with choroid 
plexus secretion of CSF, it is not possible to demonstrate 
fluid production from segments of isolated brain capillary, 
but the net result is to supply local regions of the neuropil 
with fresh fluid of optimal composition for neural function. 
Interestingly, the brain endothelium shows down-regulation 
of the AQP1 highly expressed on non-brain endothelial cells 
[51], consistent with the need to limit the rate of fluid pro-
duction to maximize local ionic homeostasis. If a large per-
centage of the ISF were provided from recirculated CSF as 
might be implied by the ‘glymphatic’ hypothesis, this would 
contain waste products from all the upstream sites exposed 
to that CSF, a much less suitable medium for optimal neural 
function.

Diffusion or flow of the ISF in the brain ECS?

A great many studies using a wide variety of tracer sub-
stances and multiple different ex vivo/in vivo methods 
have concluded that the local transport of small and large 
molecules through the brain ECS of the neuropil is pre-
dominantly diffusive in nature; such studies have included 
ventriculo-cisternal or subarachnoid-cisternal perfusion of 
radiolabelled tracers [111, 135, 144], real-time iontophoresis 
of the small tetramethylammonium ion [126], and integra-
tive optical imaging (IOI) of pressure-injected fluorescently 
labelled molecules [127, 178–180, 191]. Electron micros-
copy studies focused on neuropil ultrastructure have long 
indicated a brain ECS width of approximately 10–20 nm [21, 
75, 81, 136] and, importantly, that these narrow spaces could 
be accessed with tracers such as HRP (40 kDa) following 
intracerebroventricular injection [20, 21].

More recently, Thorne and Nicholson used in vivo dif-
fusion measurements to demonstrate that the ECS width 
in rat somatosensory cortex is substantially wider in living 
animals than these earlier EM-based estimates from pro-
cessed, conventionally fixed tissue had indicated [180]. Inte-
grative optical imaging (IOI) of intraparenchymally injected 
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dextrans and quantum dots ranging from 3 to 35 nm in size 
showed that (1) transport in the neuropil of living animals 
could be adequately described by diffusion theory and (2) 
modelling the brain ECS as cylindrical pores or as paral-
lel planes and fitting such models (with the application of 
hydrodynamic theory for hindered diffusion) to experimental 
data led to ECS width estimates of approximately 40–60 nm 
[180]. Subsequent in silico modelling work based on expan-
sion of actual tissue geometry from serial EM to match the 
established physiological brain ECS volume (20%; [171]) 
has mostly agreed well with the earlier IOI diffusion meas-
urement-based estimates of brain ECS width [102]. It has 
long been suggested that the reason diffusive transport is 
strongly favoured over flow in the brain ECS under most 
conditions is that the hydraulic resistance of such narrow 
spaces is too high for bulk flow to occur even in the presence 
of a significant pressure difference [60, 80, 192]. Recent 
modelling studies of tracer movement through the ECS have 
continued to suggest that flow in the ECS (as suggested by 
the ‘glymphatic’ hypothesis) is unlikely [80, 96].

There is currently much discussion regarding how the 
brain ECS as well as tracer transport from CSF into the brain 
may be affected by different brain states, i.e., awake versus 
sleeping versus anaesthetized conditions. Significant trans-
port of a variety of different tracers into the brain from the 
CSF has now been demonstrated in vivo in rodents subjected 
to a wide variety of anaesthetics, including ketamine/xyla-
zine [92, 195], isoflurane [89], avertin [162], and urethane 
[137]. It has been suggested by Nedergaard and colleagues 
that the influx of tracers such as 3 kDa dextran from the 
CSF to the brain is profoundly suppressed in awake mice 
compared to naturally sleeping or ketamine/xylazine anaes-
thetized mice [195]; reduced brain influx and circulation of 
CSF-infused tracer was further suggested to be the result 
of a significantly reduced brain ECS volume (and changes 
in ISF ionic composition [50]) associated with the awake 
state [195], a novel finding in itself that needs to be studied 
further and subjected to replication. Although interesting, 
decreased transport of substances from the CSF to the brain 
and a decreased brain ECS in awake animals have subse-
quently been challenged both conceptually [77] and experi-
mentally [65]. Indeed, Gakuba and colleagues recently used 
MRI and other methods to show that isoflurane-, ketamine/
xylazine-, and ketamine-anaesthetized mice actually exhib-
ited reduced CSF-to-brain influx of intrathecally infused 
contrast agent (DOTA-Gd), Evans blue, and 775 Da indo-
cyanine green dye as compared to the awake state [65]. More 
work will be needed to resolve the discrepancies between 
different groups and the effects that different methods and 
tracer substances may have on the findings.

A sieving effect of perivascular astrocyte 
endfeet?

It is tempting to speculate that transport from the perivas-
cular space into the adjacent brain ECS may be restricted 
or regulated based on the size of the gaps between adja-
cent astrocyte endfeet bordering the perivascular space; 
indeed, Iliff et al. concluded that these gaps were likely 
responsible in some way for the sieving effect that they 
observed between the distributions of small and large 
cisternally infused dextrans (discussed above; [91]). 
Transmission EM measurements from conventionally 
prepared, aldehyde-fixed tissue have suggested that such 
endfoot–endfoot clefts are approximately 20 nm wide 
(similar to the conventional EM-based estimates of ECS 
width) [114]. However, a more recent transmission EM 
study using cryofixation methods suggested that astrocyte 
coverage of cerebral blood vessels was significantly less 
complete than previously shown [105], calling into ques-
tion whether astrocyte endfoot sieving indeed occurs. The 
Korogod et al. figure for ECS volume in the relatively 
uniform brain parenchyma (~ 15% with cryopreservation 
cf ~ 2.5% with the conventional fixation) is encouragingly 
closer to physiological measurements, so that in this case, 
cryopreservation may well give a truer picture of the ECS 
than the conventional fixation. However, it is harder to 
assess the data for perivascular coverage by astrocytes 
(~ 62% cf > 90% with the conventional fixation).

Figure 3 provides a summary of the major junctions and 
adhesions that have been described for endothelial cells 
and astrocytes at the BBB [3, 11, 62, 86, 117, 168, 182, 
201]. Endothelial cell–astrocyte interactions occur in part 
through complex associations with the extracellular matrix 
(ECM) and basal lamina that are mediated by integrins, αβ 
heterodimeric receptors that bind extracellularly to laminins 
and fibronectin to link the ECM to the cytoskeleton, and 
dystroglycan, a complex of α and β subunits that binds to 
laminins, agrin, and perlecan to provide additional links 
of the ECM to the cytoskeleton. Many additional linkages 
between laminins, proteoglycans, fibronectin, type IV col-
lagen, and other ECM/basal lamina constituents have also 
been described [11, 117, 201]. In life, there is evidence that 
the astrocyte endfeet are strongly linked to the basal side of 
the endothelial cells by numerous such integrin–dystrogly-
can complexes, involving integrins in the endothelial basal 
cell membrane interacting with extracellular laminin and 
fibronectin, connecting collagen IV and proteoglycans in the 
extracellular space to dystroglycan inserted in the underly-
ing astrocyte end feet membrane. Similarly, it is proposed 
that the astrocytic layer forms an effective ‘second barrier’ 
surrounding the endothelial tube, with connexin 43 gap 
junctions linking adjacent astrocyte endfeet [64], and the 
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whole complex being sufficiently tightly knit to restrict ready 
entry of leukocytes and mast cells to the brain parenchyma 
except in pathological conditions [57]. It is also possible 
that matrix components of the basal lamina (e.g., specific 
laminin composition [158]) may play a more important role 
than has been appreciated [74], e.g., in restricting the entry 
of cells into the parenchyma after their migration across 
brain endothelial cells or the transfer of very large macro-
molecules (e.g., ~ 460 kDa ferritin [20]) from the ECS to the 
perivascular space for clearance.

While the close proximity of adjacent cells and the small 
size of the extracellular spaces in conventionally fixed 
brain tissue would not seem to accurately reflect the living 

condition, it is possible that the organization of adjacent 
perivascular astrocyte foot processes is captured more effec-
tively in aldehyde-preserved tissue than in the TEM images 
captured after cryopreservation, where ice crystals may 
disrupt the fragile cell:cell associations in the neurovascu-
lar unit and perivascular space. More research is needed to 
resolve this question. The conclusion is that it is important to 
bear in mind the physiology when interpreting microscopic 
images, especially those potentially subject to fixation/freez-
ing artefacts.

It bears stressing that basement membranes may 
prove to play a critical role in the sieving of perivas-
cularly located molecules attempting to enter the brain 

Fig. 3   Junctions and adhesions of the blood–brain barrier (BBB) and 
cerebral microvessel basal lamina. Several different tight junction 
proteins restrict and regulate paracellular diffusion as well as the dif-
fusion of membrane components between the luminal and abluminal 
compartments of polarized endothelial cells; these include occlu-
din, claudins-3, -5, and -12, zonula occludens-1 (ZO-1) and -2 (ZO-
2), and various junctional adhesion molecules (JAMs), all of which 
also participate in complex linkages with the actin cytoskeleton that 
allow endothelial cells to sense and respond to internal and external 
forces. Adherens junctions consisting of vascular endothelial cadher-
ins and associated intracellular scaffold proteins such as the catenins 
regulate cell–cell contacts and tensile forces through additional link-

ages with the actin cytoskeleton. Interactions of endothelial cells (and 
astrocytes) with components of the extracellular matrix (ECM) and 
basal lamina are facilitated by integrins, αβ heterodimeric receptors 
that bind extracellularly to laminins and fibronectin to link the ECM 
to the cytoskeleton, and dystroglycan, a complex of α and β subunits 
that binds to laminins, agrin, and perlecan to provide additional links 
of the ECM to the cytoskeleton. Numerous additional linkages within 
the ECM and basal lamina occur between laminins, proteoglycans, 
fibronectin, and type IV collagen (arrows), among others (Adapted 
from [11, 86, 168, 201] with additional information incorporated 
from [3, 62, 117, 182])
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parenchyma [19, 20, 74]; indeed, recent experimental 
work has demonstrated that intracisternally infused small 
single-domain antibodies (17 kDa; 4.5 nm apparent hydro-
dynamic diameter) more fully access perivascular base-
ment membranes than similarly infused large full length 
immunoglobulin G antibodies (150 kDa; 10 nm) [137]. A 
recent molecular characterization of the PVS with respect 
to laminin composition and other markers by Sorokin and 
colleagues provides new, critical information for future 
work in this area [74].

ISF bulk flow

Confusion has long been associated with what different 
groups have meant in suggesting or describing “ISF bulk 
flow”. The pioneering work of Helen Cserr and a num-
ber of her contemporaries often made mention of “bulk 
flow of ISF”, but careful reading reveals that this typically 
was intended to describe flow principally limited to low-
resistance pathways such as the perivascular spaces and 
white matter tracts [1, 33, 150] and not within the narrow 
and tortuous brain ECS. In summary, it seems increasingly 
likely that a great many studied macromolecule tracers 
as well as endogenous proteins in the CSF distribute into 
brain tissue via transport processes that may be adequately 
described by some combination of diffusion in the ECS 
and convection in the perivascular spaces [68, 137, 142, 
148, 185].

CSF and ISF compartmentalization 
and drainage pathways

CSF and ISF are generally considered to be similar in com-
position [1, 37, 77, 177], with the exception that the ISF 
exists in an environment containing an abundant ECM that 
may play key roles in CSF/ISF transport and exchange [171, 
177]. The polyanionic nature and binding capacity of the 
ECM may significantly impact the diffusion of certain ions 
and other molecules in the brain ECS (e.g., confinement 
or binding of ions by perineuronal nets [76] or chondroitin 
sulphate proteoglycans [83], sequestration of growth fac-
tors [173], and protein binding to heparan sulphate proteo-
glycans [179]). CSF–ISF exchange of molecules is, there-
fore, expected to be limited by (1) molecular size, (2) ECM 
interactions, (3) receptor binding, (4) aggregation state (e.g., 
certain pathogenic proteins), (5) permeability characteristics 
(e.g., clearance across the BBB), and (6) distance from the 
brain–CSF interface, and likely other factors.

The precise drainage pathways for CSF and ISF out of 
the central compartment have also been the source of much 

recent interest. CSF drainage occurs directly into the blood 
via arachnoid villi or granulations into the venous sinuses 
of the dura mater and also into the lymphatic system via 
cranial and spinal nerves [138]. Drainage occurs along the 
olfactory nerves to the nasal mucosa to the cervical lymph 
nodes [16, 17, 59, 101, 172, 188] and along spinal nerves 
to cervical, intercostal, and other lymph nodes [103]. An 
additional pathway for CSF/ISF drainage appears to occur 
within dural lymphatic vessels to the cervical lymph nodes 
[7, 113], but just how CSF enters the dural lymphatic ves-
sels has not been well described.

Tracer studies suggest that the drainage of ISF and CSF 
from the brain is compartmentalized. For example, the 
transport and drainage of ISF-administered tracers have 
shown significant lateralization; brain-injected tracers 
appear to preferentially drain along perivascular spaces 
on the same side as the injection and into ipsilateral cer-
vical lymph nodes [16, 172]. By contrast, CSF-admin-
istered tracers drain into cervical lymph nodes on both 
sides [101, 137, 172]. Studies of nose-to-brain transport 
further support some degree of separation between CSF 
and ISF [181]. Földi and colleagues have long proposed 
that drainage of ISF along the PVS is indeed compart-
mentalized from the CSF as it drains from the brain, pos-
sibly by the presence of the cells ensheathing the vessel 
in the subarachnoid space [61] (e.g., as described by [4]). 
In addition to tracer studies, antigenic responses also 
appear to suggest a compartmentation of CSF and ISF 
[58, 66], as parenchymal tissue grafts and ISF antigens 
elicit more limited immune responses (e.g., [122, 155, 
167]) than CSF-administered tissue or antigen that usu-
ally results in a strong immune response (e.g., [122, 167]). 
In summary, a synthesis of the older descriptive work on 
ISF–CSF relationships and fluid turnover and clearance 
from the central compartment, together with more recent 
work incorporating more sophisticated molecular charac-
terization of specific drainage pathways out of the CNS 
to venous blood and draining lymph nodes, suggests that 
there remain gaps in our understanding of the precise rela-
tionships, pathways, and their relative importance. Further 
work is clearly needed in this area.

Practical and clinical implications of ISF/CSF 
interaction

CSF sampling has inherent problems associated with study-
ing the composition and dynamics of CSF which include: 
pharmacological effect of anaesthesia; confounding effects 
of circadian rhythm; inflammation during disease or sur-
gical intervention; and changed ventricular pressure after 
removing CSF or adding tracers into the enclosed ventricular 
system. All these will affect CSF flow and/or production, 
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potentially influencing data obtained (these and other con-
founding factors are discussed in detail elsewhere [166]). 
Sampling CSF multiple times is a particular problem when 
comparing healthy and diseased states, or young versus 
old. Removal of fluid and reduction in intracranial pressure 
alter CSF dynamics until the fluid can be replenished, and 
replacement rate is faster in the young or healthy (591 ml/
day, human), compared to in older or pathological situations 
(294 ml/day) [145, 157]. As a result, biomarkers or drugs 
are expected to be concentrated in the smaller volume of 
fluid of the old or with certain diseases. For example, Slats 
et al. [160] sampled 6 ml of patients’ CSF every hour for 
36 h using indwelling L3–4 lumber puncture cannula. They 
noted total CSF protein and pathological tau increased over 
the study period in the Alzheimer’s disease patients, but not 
in age-matched controls, suggesting an artefact in sampling 
from the frailer patients.

Another important issue is assessing CSF uptake of sys-
temic drugs when plasma concentration is 10–100× greater 
than CSF or brain. Contamination of the CSF sample with 
whole blood or plasma must be ruled out, but microscopic 
inspection for erythrocytes cannot always rule out contami-
nation because erythrocytes may lyse. Tests for haemoglobin 

are preferred, because even a 1 in 100 contamination with 
blood could significantly affect drug determination [27].

Using CSF as a proxy for brain drug levels is commonly 
used in both clinical and pre-clinical studies. However, the 
pitfalls are numerous and include the issues already men-
tioned above, as well as the fact that drug distribution in 
CSF depends on the chemistry of the compound and its 
interaction with uptake and efflux transporters at CNS/blood 
interfaces.

Doran et al. [52] very helpfully studied a library of Pfiz-
er’s small molecule drugs < 450 Da, measuring both brain 
and CSF uptake in mice after systemic administration. Re-
analysis of their data (Fig. 4) shows that brain penetration 
increases as drugs become more lipid soluble (increasing 
CLogD); conversely, however, CSF penetration decreases as 
drugs become more lipid soluble. This is consistent with the 
aqueous CSF being less amenable to partitioning of lipid-
soluble drugs compared to brain, where drugs are exposed to 
lipid cell membranes into which they can partition.

For hydrophilic drugs with CLogD < 1, CSF drug content 
may be predictive of brain levels, because there is similar, 
modest distribution into both compartments and there is sig-
nificant correlation between the two (p = 0.023, R2 = 0.68, 
df = 6). However, for highly brain penetrant lipophilic drugs 

a b

Fig. 4   Brain/plasma (a) and CSF/plasma (b) AUC ratios for CNS-
active agents plotted against their CLogD values, in Female FVB 
(WT) and mdr1a−/−/1b−/− (KO) mice. Re-analysis of data from Doran 
et  al. [52]. Mice were administered with 3  mg/kg drug s.c. (5  mg/
kg caffeine) then brain, CSF and plasma taken at 0.5, 1, 2.5, or 5 h 
post-dose. Drug analysis was by HPLC/mass spectrometry, yielding 
the area under the curve (AUC). For this analysis, drugs with weak 
P-glycoprotein interaction (brain uptake KO: WT ratio  <  2) were 
selected from the original data set of 33 compounds, n = 5 mice per 
genotype per timepoint. The inverse correlation between CSF/plasma 
ratio and drug lipid solubility CLogD (b) shows that the most lipid-
soluble drugs had the smallest distribution in CSF in both WT and 

KO mice (p  <  0.05). Lines represent linear regression analysis for 
(a) Brain/plasma; WT open squares, R2 0.01, p  =  0.109; KO filled 
diamonds, R2 0.09, p = 0.138 (b) CSF/plasma; WT open circles, R2 
0.158, p = 0.040. KO filled circles, R2 0.206, p = 0.017 (df = 26). 
Bus buspirone, Caf caffeine, Car carisoprodol, Chl chlorpromazine, 
Cit citalopram, Cloz clozapine, Crb carbamazepine, Cyclo cycloben-
zaprine, Dia diazepam, Eth ethosuximide, Flx fluoxetine, Hal halop-
eridol, Hyd hydroxyzine, Lam lamotrigine, Mep meprobamate, Meth 
methylphenidate, Mid midazolam, Mor morphine, Nor nortriptyline, 
Phn phenytoin, Sel selegiline, Srt sertraline, Sul sulpiride, Th thiopen-
tal, Traz trazodone, Ven venlafaxin, Zol zolpidem
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with CLogD > 3, CSF uptake does not correlate with brain 
(p = 0.148, R2 = 0.45, df = 5) and brain levels are on average 
9× those in CSF.

Drug interaction with efflux transporters may also play a 
role. In mice lacking P-glycoprotein (mdr1a−/−/1b−/− knock-
out mice), there is even greater difference between brain 
and CSF distribution. This is mainly due to increased brain 
distribution in mdr1a−/−/1b−/− mice, since P-glycoprotein 
is not available to efflux the drug back to blood. For exam-
ple, lipophilic drugs with CLogD > 3 have brain levels on 
average 12× higher than CSF (compared to 9× CSF levels 
in wild-type mice). Even hydrophilic drugs’ brain distribu-
tion is affected, increasing from 2× CSF levels in the wild-
type mice, to 3× CSF levels in the mdr1a−/−/1b−/− mice for 
drugs with CLogD < 1. In general, brain and CSF uptake 
of P-glycoprotein substrates are closer to each other at any 
given CLogD in the wild-type mice.

Therefore, it cannot be assumed that the presence of 
any compound in CSF is a true reflection of its brain level, 
particularly for lipophilic drugs that evade efflux transport. 
Similar data are not available for large molecules or biolog-
ics and would presumably be different for drugs interacting 
strongly with other transport or efflux systems.

CNS pathologies and disturbances of brain 
fluids

Several pathologies of the cerebral microvasculature, includ-
ing the associated cells of the neurovascular unit, and the 
perivascular space, have been mentioned briefly above. 
Here, we focus on some additional brain pathologies with 
particular relevance to fluid drainage pathways and brain-
fluid flow.

Brain oedema is the accumulation of excess fluid in the 
brain, either in the intracellular (cytotoxic oedema) or extra-
cellular compartments (vasogenic oedema) [123], though 
these two types of fluid accumulation rarely occur indepen-
dently (e.g., certain pathologies including diabetes, stroke, 
and traumatic brain injury may involve both vasogenic and 
cytotoxic oedema [55, 175]). Cytotoxic (cellular) oedema 
can result from toxic agents (including many in common use 
such as dinitrophenol (weight loss agent), hexachlorophene 
(disinfectant), and organophosphates including insecticides 
[28]), ischaemic stroke, or hypoxia; in cytotoxic oedema, the 
BBB may stay intact, but disturbance of cellular metabolism 
impairs ion transport in glial cell membranes, leading to 
cellular retention of sodium and water, and cell swelling 
especially in astrocytes in gray and white matters. Cyto-
toxic oedema may also be associated with a reduced ECS 
volume, further hindering diffusional transport of oedema 
fluid and solutes in the gray matter [82]. Vasogenic oedema 
results from breakdown of the BBB, e.g., associated with 

trauma, hypertension, osmotic imbalance, brain cancer, and 
brain inflammation (meningitis or encephalitis), allowing 
intravascular proteins and fluids into the parenchymal ECS. 
Several studies of vasogenic oedema models have demon-
strated that bulk flow pathways, including white matter tracts 
and perivascular spaces, are important sites for oedema 
fluid movement and clearance (reviewed in [138]). Aqua-
porin water channels clearly play a role in the resolution of 
edema; in particular, AQP4 has been suggested to regulate 
ECS water in the healthy and diseased brain due to its local-
ized expression on astrocytes at brain–CSF and blood–brain 
interfaces and demonstrated alterations in disease states [8]. 
Treatments based on mechanistic understanding may include 
intravascular mannitol and/or saline (osmotherapy), mela-
tonin, and inhibitors of water channels (e.g., aquaporins) 
and ion cotransporters [47, 190]. Finally, decompressive 
craniectomy may be required in extreme/acute cases [23].

Prion diseases (or transmissible spongiform encephalopa-
thies, TSE’s) are a group of progressive neurodegenerative 
conditions, which unlike most infections which involve 
bacteria or viruses, involve misfolded protein [71, 197]. All 
known prion diseases in mammals affect brain structure, cre-
ating microscopic holes and hence a ‘spongy’ texture, with 
severe consequences for brain function. Prion diseases exist 
in both animals and humans. Scrapie, a disease affecting 
sheep and goats, was the first prion disease to be identified 
in the 1730s. In humans, the outbreak of Creutzfeldt–Jakob 
disease variant resulted from eating infected bovine-derived 
meat.

Prion-like spread of other CNS pathologies involving 
aggregated proteins is now recognised—for amyloid-β (Alz-
heimer’s disease), α-synuclein (Parkinson’s disease), and 
mutant Huntingtin (Huntington’s disease) [14, 31], although 
the underlying mechanisms are not understood in detail [79, 
85]. Extracellular vesicles (EVs) released from one cell and 
capable of influencing another (a known method of cell:cell 
communication) are recognised to be involved in the pro-
tein transmission in some of these neuropathies [106, 184], 
and also in tumours [29]. It is clear that the health of CSF 
and ISF flow and drainage will influence the spread of such 
aggregated proteins.

A recent analysis of abnormal phosphorylated tau 
(p-tau) deposition in samples from temporal cortex and 
adjacent white matter taken from patients with temporal 
lobe epilepsy (TLE) and chronic traumatic encephalopathy 
(CTE) has reported a similar pattern of pathological tau 
deposition in perivascular spaces in both conditions, sug-
gesting similar underlying cerebrovascular pathology with 
abnormal perivascular p-tau accumulation as a potential 
mechanism [143]. Both TLE and CTE physiopathology 
involve neuronal death which likely initiates spillage of 
unbound tau protein into the extracellular space and, from 
there, to perivascular lining cells and perivascular spaces. 
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Extracellular p-tau appeared to follow extracellular drain-
age pathways in the neuropil that led toward perivascular 
spaces bordering large (> 100 µm diameter) blood vessels; 
p-tau immunoreactivity was prominent within astroglial 
cells adjacent to blood vessels and frequently appeared 
clustered within the peri-venous space. Importantly, aggre-
gated p-tau was detected in brain tissue from both CTE 
and TLE, but little was observed in control brain. Since 
larger aggregates of p-tau would not be as free to move 
readily through the brain ECS by diffusion as unbound 
monomers, such aggregates likely become trapped within 
the tissue, particularly the tissue space bordering venules 
and large veins; this sequence of events would be expected 
to further impede the subsequent clearance of p-tau and 
other waste constituents over time. Interestingly, military 
personnel exposed to blast shockwaves (e.g., from explo-
sive devices) also show a characteristic pattern of GFAP 
and p-tau immunoreactivity with prominent astroglial 
scarring at brain–fluid interfaces including the subpial 
region and perivascular spaces [156].

Perivascular accumulation of p-tau is also observed in 
Alzheimer’s disease and has been demonstrated to be pre-
sent in arteries/arterioles as well as veins in the parenchyma 
[118]. Interestingly, perivascular amyloid beta deposits (cer-
ebral amyloid angiopathy) within the tunica media of lep-
tomeningeal arteries as well as cortical arteries, arterioles, 
and capillaries are among the classic neuropathological hall-
marks of Alzheimer’s disease, while veins and venules rarely 
exhibit such deposits [154]. Such characteristic amyloid beta 
accumulation in Alzheimer’s disease has led some to sug-
gest that this pathology results from failure of amyloid beta 
drainage out of the brain within the basement membranes of 
capillaries, arterioles and arteries [141]. However, it has also 
been suggested that this pattern of amyloid beta deposition 
could be due to abnormal perivascular amyloid beta entry 
and accumulation from the CSF into the brain [69, 137], 
consistent with reports that leptomeningeal arteries typically 
exhibit more cerebral amyloid angiopathy than penetrating 
cortical arteries [154]. Indeed, it is now increasingly appre-
ciated that structural alterations in draining venules and 
veins also may play a role in the pathology of Alzheimer’s 
disease [109], so the precise mechanisms at play in produc-
ing the perivascular pathology and amyloid deposition of 
Alzheimer’s disease require further study.

Finally, it bears noting that an enlarged PVS has been 
identified (typically associated with larger caliber vessels 
such as perforating arterioles and venules) in a number of 
clinical MRI studies of patients with traumatic brain injuries 
[93], acute ischemic stroke [53], and multiple different types 
of mucopolysaccharidoses [115, 198]. Enlarged perivascular 
spaces might simplistically suggest either increased water 
secretion by the BBB, decreased clearance of CSF, increased 
resistance to the circulation/transport and/or drainage of 

perivascular fluid, or a combination of all of the above. 
The mechanism of increased production or decreased CSF 
absorption seems unlikely, at least in ageing-related small 
vessel ischemic disease, where ventricular size is commonly 
normal, so it is tempting to speculate that some form of 
hindrance or impedance of perivascular fluid circulation/
transport may underlie the enlarged PVS observed in this 
condition.

In summary, if cerebral regulation of fluid and waste 
elimination is disrupted, a dangerous cycle can emerge 
between impedance of waste clearance pathways and exac-
erbation of cerebral oedema or inflammation.

Conclusions

Therefore, to return to the question—does the ‘glymphatic’ 
system exist, in the form of AQP4-dependent convective 
flow pathways bathing neurons, synapses and glia in the 
parenchyma? It is becoming increasingly apparent that 
under normal conditions, such flows likely do not exist in 
the neuropil of the gray matter. Rather than a ‘glymphatic’ 
system as originally proposed [91, 124, 125], the weight of 
the evidence now suggests the existence of a perivascular 
fluid system for the CNS, with convective flow or disper-
sion along the perivascular spaces of larger vessels and 
then diffusion predominantly regulating CSF/ISF exchange 
at the level of the neurovascular unit associated with CNS 
microvessels, as now proposed by several groups [6, 74, 
80, 96, 137, 161, 162, 192]. It remains possible that peri-
capillary convection occurs in the basal lamina in addition 
to diffusion to formally link up the arteriolar and venular 
perivascular fluid compartments and allow a fully convec-
tive circulation pathway [74, 137]; regardless, CSF/ISF 
exchange may at least partly occur through the neuropil 
of the gray matter at the capillary level by diffusion, as 
neurons and all the other constituents of the NVU are not 
located further than about 10–20 µm from the pericapillary 
spaces, a distance that has likely been optimized for the 
effective diffusion of glucose, oxygen, and countless other 
substances from the circulation [3, 192].

In summary, the classical view of the system (pre-2012) 
together with recent studies supports the evidence for dif-
fusion (not bulk flow) from capillaries and throughout the 
interstitium, the optimal arrangement for homeostasis of 
the neuronal microenvironment. This acts together with a 
well-regulated system of convective flow channels, where 
they are most needed and will least disturb neural func-
tion: (a) in the vascular system supplying arteries and ulti-
mately capillaries and (b) in the perivascular space around 
large arteries and arterioles, extending down to the capil-
lary level, carrying flow of a small volume of CSF from 
the brain surface into the brain. The PVS around venules 



401Acta Neuropathologica (2018) 135:387–407	

1 3

and veins would appear to collect fluid drainage from the 
interstitium and channel it out of the parenchyma, partly 
back to the CSF in the SAS but also to other sites; in 
addition, there is some seepage of fluid drainage across 
the ependyma into the ventricles. The net result is well-
maintained homeostasis of the neural microenvironment, 
efficient (and sufficient) communication between CSF pro-
duced by the CP and the brain parenchyma, and efficient 
clearance of cell debris and waste products of metabo-
lism which are too large to exit across the endothelium 
of the blood vessels. Clearly, much more work is needed 
to resolve current discrepancies surrounding many other 
aspects of the system, perhaps most notably the effect that 
different anaesthetics, natural sleep and wakefulness may 
have on convective and diffusive transport in the PVS and 
ECS, respectively. More sophisticated quantitative mod-
elling of such transport is urgently needed and will likely 
play a larger role in the future to better clarify some of the 
discrepancies and to suggest new experiments that may 
help to resolve them.

In several pathologies, disturbances of any element of this 
system can result in brain fluid accumulation and oedema. 
In many cases, the oedema is local and resolved by endog-
enous repair mechanisms; in more severe cases, medical/
surgical intervention may be required. Recovery of brain 
function can involve adjustments in the vascular and brain 
fluid flow channels and neuronal plasticity to compensate at 
least in part for damaged circuits. It is clear that maintaining 
some form of healthy perivascular fluid circulation and at 
least some degree of CSF/ISF exchange, as well as a healthy 
cardiovascular system, are important in preserving effective 
CNS function into old age.
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